
Run Your Code without
Managing Servers

Let's Talk Digital Series #14

1

 Run Your Code without Managing Servers

Most data professionals run their Python or R scripts on notebooks hosted on their local machines, or
on the cloud like AWS’ SageMaker, GCP’s AI Platform notebook, or even Google Colab. After writing
code, it’s likely your code will be used:

1.
2. To perform data cleaning and maintenance
3. To run tasks in the cloud instead of on the app
4. To integrate your code with third-party services or APIs or etc.

Traditionally, most of these applications would require your code to be hosted in an on-site server for it
to run in a production environment. This obviously comes at a cost from server maintenance and other
hardware costs. There are now cheaper options where you can write code, and deploy into the cloud for
a production environment, without the hassle of managing servers or instances. One example of this is
using Google Cloud Functions . This example is applicable to AWS’ Lambda as well.

Google’s Cloud Functions is a serverless environment for developers to build and connect cloud
services. All developers need to do is to write simple functions which are automatically triggered
when an event being watched happens. Here is a simple example: notice the URL below has several
parameters: location and date. This is a cloud function I built to extract weather forecast data using

https://us-central1-explore-london-279709.cloudfunctions.net/get_weather_
forecast?location=LOCATION:128&date=2020-07-29

Using a browser to head to the URL gives you a snapshot below.

Varying the URL to a location in Kelantan gives

https://us-central1-explore-london-279709.cloudfunctions.net/get_weather_
forecast?location=LOCATION:151&date=2020-07-29

 https://cloud.google.com/functions
 https://aws.amazon.com/lambda/
 https://api.met.gov.my/

RUN YOUR CODE
WITHOUT MANAGING SERVERS

2

 Run Your Code without Managing Servers

import requests

def get_location_date(request):
 location = request.args.get(‘location’, ‘LOCATION:237’)
 date = request.args.get(‘date’, ‘2020-07-27’)
 location_date = get_weather_forecast(location, date)
 return location_date

def get_weather_forecast(location, date):
 headers = {‘Authorization’: ‘METToken __INSERT TOKEN HERE__’}
 params = (
 (‘datasetid’, ‘FORECAST’),
 (‘datacategoryid’, ‘GENERAL’),
 (‘locationid’, location),
 (‘start_date’, date),
 (‘end_date’, date),
)
 response = requests.get(‘https://api.met.gov.my/v2/data’, headers=headers, params=params)
 sample = response.json()
 return(str(sample[“results”][5][‘locationrootname’])+” “+str(date)+” “+str(sample[“results”][5]
[‘attributes’]))

get_location_date(request) accepts the location and date parameters from the URL. The default
parameters have been set for ‘LOCATION:237’ and ‘2020-07-27’ for demonstration purposes.

get_weather_forecast(location, date) takes the location and date parameters, feeds it into the MET API,
and processes the response for display on a website.

At the time of writing, the MET API Version 1 is working but due to be replaced with API Version 2 to be

Feel free to try varying the location and date parameters. A sample of 10 location codes are listed as
below:

ID NAME

LOCATION:135 Segamat

LOCATION:123 Batu Pahat

LOCATION:157 Pasir Mas

LOCATION: 426 Serdang

LOCATION:122 Ayer Hitam

ID NAME

LOCATION:154 Kuala Krai

LOCATION:128 Pagoh

LOCATION:410 Kubang Pasu

LOCATION:156 Machang

LOCATION:153 Kota Bahru

3

 Run Your Code without Managing Servers

The architecture diagram for this script is a simple one:

This cloud function has been programmed to respond to a HTTP request, which means the parameters
the users are looking for are available within the URL. The response can be displayed on a website or
be sent to an app for user consumption purposes.

cleaning function to run at the end of every day. The function can also be triggered in the event of

A common application would be to integrate a function with third-party services and APIs.

The advantage of using Functions-as-a-Service (FaaS) like Cloud Functions or Lambda, is the ease of
deploying functions to a production environment, and the low cost involved (since no hardware costs
are involved).

If you would like to do some hands on work with Google Cloud Functions, there are tutorials available
on Tutorials | Cloud Functions Documents . A few example architectures can also be found on What
can I do with Cloud Functions?

1. Using an internet browser, the user heads to the URL which has the query parameters.
2. Google’s Cloud Function will process the parameters and query MET API to get the relevant

data.
3. The resulting data is then sent back to the user.

 https://cloud.google.com/functions/docs/tutorials

4

This article is part of the Digital Banking Learning Series, 'Let's Talk Digital', an
initiative by the ABS Center for Digital Banking. It is written by industry
practitioners and are aimed at educating the general public on the intricacies
of digital applications in banking and other related industries, including the
latest insights and trends of Digital Banking.

As the industry’s preferred partner in learning and development, ABS o�ers
relevant training programmes that covers a comprehensive list of banking
areas that are designed and developed in-house by our Specialist Training
Consultancy Team or in collaboration with strategic learning partners that
includes some of the top business schools in the world. It also provides
specialised consulting services and tailored learning solutions to meet the
speci�c needs of its clients.

For more information, visit our website at www.asianbankingschool.com or
email us at digitalbanking@asianbankingschool.com

 Run Your Code without Managing Servers

